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Arrays of quantum dots (QDs) are a promising candidate system to realize scalable, coupled qubits
systems and serve as a fundamental building block for quantum computers. However, establishing a
stable configuration of electrons in space is a non-trivial task achieved via electrostatic confinement,
band-gap engineering, and dynamically adjusted voltages on nearby electrical gates. A key task is to
determine a good set of control parameters (gate voltages) to achieve a desired charge configuration—
in both number and location—for a successful experiment.

In recent years, many research groups working with QDs began to implement machine learning
(ML) techniques to automate the QD tuning task. This dataset, consisting of both simulated and
experimental QD measurement data, was established to enable development and benchmarking of
ML tools for automation of QD experiments.
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QFLOW 2.0: DATASET STRUCTURE

The QFlow 2.0 dataset contains the following files:

data qflow v2

experimental

exp large

exp small

simulated

sim normal

sim uniform

Experimental data structure

There are two types of experimental files stored in separate folders:

exp small: A dataset of 756 small 2D scans, ranging from 30×30 pixels to 60×60 pixels with 1 mV- to 2 mV-per-pixel
resolution.

exp large: A dataset of 12 large 2D scans, ranging from 126 × 126 pixels to 401 × 401 pixels with 1 mV- to 2 mV-
per-pixel resolution.

Information about each experimental measurement is stored as an individual NumPy file. Each NumPy file in the
experimental data dataset contains the charge sensor data (‘sensor’), the voltage range for each axis over which
the measurement was performed (‘x’ and ‘y’, with ‘x’ being the dominant measurement direction), as well as
information about the device used in measurement and the cooldown (‘dataset’). The data was acquired over two
cooldowns of one of the devices (indicated as 0 and 1) and a single cooldown of a second device (indicated as 2). The
units are not included in the data but they are provided here for completeness. In addition, the exp small includes
the human-assigned labels.

Each data file is stored as a dictionary with the following elements (keys) with the data type of each element in the
dictionary given in the brackets:

‘x’: voltage range for the first gate (in volts) [1D NumPy array],

‘y’: voltage range for the second gate (in volts) [1D NumPy array],

‘sensor’: the charge sensor data (in amperes) [2D NumPy array],
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‘dataset’: indication of the device and cooldown (when appropriate) (0, 1, or 2) [integer],

‘label’: the state label for the data [1D NumPy array] (only in data in the exp small folder).

To see the full data structure of each file see Fig. 1.

FIG. 1. The generic data structure tree for the files. The data type is given in brackets.

file [dictionary]

‘sensor’

[numpy.ndarray]
‘x’

[numpy.ndarray]
‘y’

[numpy.ndarray]
‘dataset’ [int]

‘label’

[numpy.ndarray]
(exp small only)

Simulated data structure

There are two types of simulated noisy data stored in separate folders (each containing 10 HDF5 files):

sim normal: A dataset of 1.15 × 105 simulated noisy measurements generated by fixing the relative magnitudes
of white noise, 1/f noise, and sensor jumps and varying the magnitudes together in a normal distribu-
tion. The means of the magnitudes are set to 1.5 times the optimized values and the standard deviation
is one-third of each magnitude’s value (0.5 of the optimized value). Each file includes 1.15 × 104 simulated
measurements, with the noise varied in the same distribution. The file naming convention in this folder is
normal 1.5m 0.5std noisy data X.hdf5, where X = 0, . . . , 9 indicates the corresponding subset of the data.

sim uniform: A dataset of 1.15 × 105 simulated noisy measurements with varying amounts of noise added. The
magnitudes of all noises that negatively affect the signal-to-noise ratio (sensor jumps, 1/f , and white noise)
are varied together uniformly from 0 to 7 times the optimized noise magnitudes while the dot jumps noise
variation is kept within the 1 % used to establish the sim normal dataset. Each file includes 1.15 × 104 simu-
lated with noise level sampled uniformly over a range of noise levels, with consecutive files being increasingly
noisy at increments of 0.7 of the optimized noise composition. The file naming convention in this folder is
uniform noisy data quantile X.hdf5, where X indicates the range of noises used in a given subset and takes
on the form m-(m+0.70) for m = 0.00, . . . , 6.30.

There are three additional files in the experimental folder. The bn noCP 0-7uniform info.csv and bn noCP 1.5m
0.5std info.csv files contain information about the noisy simulated data (three columns per each file in the in a
particular file in the sim normal and sim uniform folders): the noise magnitude used to augment the data and the
x and y size after augmentation (note that implementing certain types of noise necessitates slight changes to the file
size). The source file information is also included. The noiseless data.hdf5 file contains physical parameters used
to simulate the noiseless measurements as well as the simulated charge sensor and state maps.

Each entry in the hdf5 files in the simulated folder is stored as a dictionary-like object called a group with the
following elements (keys) in it (the type of each element is given in the brackets):

‘V P1 vec’: voltage range for the first plunger [1D HDF5 dataset],

‘V P2 vec’: voltage range for the second plunger [1D HDF5 dataset],

‘output’: the simulated data [HDF5 group]

In addition, the noiseless data.hdf5 file contains information about the physical parameters used to simulate each
noiseless measurement:

‘physics’: physical parameters of the device [HDF5 group]

and the files in the sim normal and sim uniform folders contain information about the level of the noise added:

‘noise level’: the level of the simulated noise [float].

The full data structure of each noiseless file entry in noiseless data.hdf5 is shown in Fig. 2. The noisy files
entries are shown in Fig. 3. For details about the ‘output’ HDF5 group refer to Table I, and for details about the
‘physics’ HDF5 group see Table II.



FIG. 2. The generic data structure tree for the entries in the noiseless data HDF5 file. The data type is given in brackets. The
simulation outcome data is highlighted in gray. For details about the ‘output’ data HDF5 group see Table I. For details about
the ‘physics’ data HDF5 group see Table II.

file [HDF5 group]

‘physics’
[HDF5 group]

‘sigma’ [float]

‘V’ [HDF5 dataset]

‘V L’ [float]

‘V R’ [float]

‘x’ [HDF5 dataset]

‘beta’ [integer]

‘c k’ [float]

‘D’ [integer]

‘g 0’ [float]

‘gates’ [HDF5 group]
‘gatei’ (i = 1, . . . , 5)

[HDF5 group]

‘alpha’ [float]

‘h’ [float]

‘mean’ [float]

‘peak’ [float]

‘rho’ [float]

‘screen’ [float]

‘K 0’ [float]

‘K mat’ [HDF5 dataset]

‘mu’ [float]

‘sensor gate coeff’ [float]

‘sensors’ [HDF5 dataset]

‘V P1 vec’
[HDF5 dataset]

‘V P2 vec’
[HDF5 dataset]

‘output’
[HDF5 group]

‘sensor’ [HDF5 dataset]

‘state’ [HDF5 dataset]

TABLE I. ‘output’ is a HDF5 group of 2D HDF5 datasets storing the simulated data for each point in the plunger voltage
space, as defined by vectors ‘V P1 vec’ and ‘V P2 vec’.

Key Description Type

‘sensor’ the output of the charge sensor evaluated as the Coulomb potential at the
sensor location (with artificial noise added if in the noisy sensor data)

float

‘state’ the label determining the state of the device, distinguishing between no dot
(0), left dot (0.5), central dot (1), right dot (1.5), and a double dot (2)

float

QFLOW LITE: DATASET STRUCTURE

Each NumPy file contains information about a single simulated device, such as physical parameters used in the
simulation and the output of the simulation. The units are not included in the data but they are provided here for
completeness. Each file is stored as a dictionary with the following five elements (keys) in it (the type of each element
in the dictionary is given in the brackets):



FIG. 3. The generic data structure tree for the entries in the noisy data HDF5 files. The data type is given in brackets. The
simulation outcome data is highlighted in gray. For details about the ‘output’ data HDF5 group see Table III.

file [HDF5 group]

‘noise level’
[float]

‘V P1 vec’
[HDF5 dataset]

‘V P2 vec’
[HDF5 dataset]

‘output’
[HDF5 group]

‘sensor’ [HDF5 dataset]

‘state’ [HDF5 dataset]

‘type’: ‘V P map’ – information about what data is in the file [string],

‘V P1 vec’: voltage range for the first plunger (0 to 0.4 V) [(100, ) numpy.array],

‘V P2 vec’: voltage range for the second plunger (0 to 0.4 V) [(100, ) numpy.array],

‘output’: the simulated data [list];

‘physics’: physical parameters of the device [dictionary];

To see the full data structure of each file see Fig. 4. For detail about the ‘output’ refer to Table III and for details
about the ‘physics’ see Table IV.



TABLE II. ‘physics’ is a HDF5 group with physical parameters of the device. Fixed values are given explicitly. Varied
parameters were randomly sampled from a Gaussian distribution with the given mean value µ and standard deviation set to
0.05µ (unless stated otherwise).

Key Description Value

sigma softening parameter 3.0 nm

V potential profile V(x)

V L voltage applied to left lead 50 µV

V R voltage applied to right lead −50 µV

x linear array spanning the size of the device (−60, 60) nm

beta effective temperature used for self-consistent calculation of the electron
density n(x)

1000 (eV)−1

c k kinetic term for the 2DEG 〈1 meV nm〉
D dimension of the problem to be used in the electron density integral,

(only when polylogarithm function is used to calculate the electron
density, for a 2DEG a direct analytic integral of the Fermi function is
used)

2

g 0 coefficient of the density of states 〈1.0 (eV nm)−1〉
gates the HDF5 group of parameters defining each of the five gates:

alpha: lever arm (same for all gates) 〈1.0〉
h: distance of the gate from the electron density (same for all gates) 〈50.0 nm〉
mean: position of the gate along linear array

- for gate 1 〈−40 nm〉
- for gate 2 〈−20 nm〉
- for gate 3 〈0 nm〉
- for gate 4 〈20 nm〉
- for gate 5 〈40 nm〉

peak: potential at the location of the electrons

- for gates 1, 3 and 5 〈0.2 mV〉
- for gates 2 and 4 〈−0.4 mV〉

rho: radius of the cylindrical gate (same for all gates) 〈5.0 nm〉
screen: the screening length (same for all gates) 〈20.0 nm〉

K 0 the strength of the Coulomb interaction 〈10 meV〉
K mat the Coulomb interaction matrix K mat(x,K 0,sigma)

mu Fermi level (assumed to be equal for both leads) 0.1eV

sensor gate coeff weight applied while including the potential of the gate in calculating
the sensor output

0.1

sensors the position of the charge sensor in the 2DEG plane, stored as (horizon-
tal position with respect to the center of the device, vertical position
with respect to the dots which are assumed to be located on the x-axis)

[(−20, 50)] nm

TABLE III. ‘output’ is a list of dictionaries storing the simulated data for each point in the plunger voltage space, as defined
by vectors ‘V P1 vec’ and ‘V P2 vec’. There is 10 000 data points (dictionaries), each with four variables defined in the table.

Key Description Type

‘charge’ the information about the number of charges on each dot (with a default
value 0 for short circuit and a barrier)

tuple

‘current’ current through the device at infinitesimal bias float

‘sensor’ the output of the charge sensor evaluated as the Coulomb potential at the
sensor location

list

‘state’ the label determining the state of the device, distinguishing between a single
dot (1), a double dot (2) , a short circuit (-1) and a barrier (0)

integer



FIG. 4. The generic data structure tree for the files. The data type is given in brackets. The simulation outcome data is
highlighted in gray. For a data dictionary see Table III and Table IV.

file [dictionary]

‘physics’
[dictionary]

‘attempt rate coef’
[integer]

‘barrier current’ [float]

‘barrier tunnel rate’
[float]

‘beta’ [integer]

‘bias’ [float]

‘c k’ [float]

‘D’ [integer]

‘g 0’ [float]

‘gates’ [dictionary]
‘gatei’ (i = 1, . . . , 5)

[dictionary]

‘alpha’ [float]

‘h’ [float]

‘mean’ [float]

‘peak’ [float]

‘rho’ [float]

‘screen’ [float]

‘K 0’ [float]

‘K mat’ [numpy.ndarray]

‘kT’ [float]

‘mu’ [float]

‘sensor gate coeff’ [float]

‘sensors’ [list] [tuple]

‘short circuit current’
[float]

‘sigma’ [float]

‘V’ [numpy.ndarray]

‘V L’ [float]

‘V R’ [float]

‘WKB coeff’ [float]

‘x’ [numpy.ndarray]

‘output’ [list]

[dictionary]

‘charge’ [tuple]

‘current’ [float]

‘sensor’ [list]

‘state’ [integer]

‘V P1 vec’
[numpy.array]

‘V P2 vec’
[numpy.array]

‘type’ [string]



TABLE IV. ‘physics’ is a dictionary with physical parameters of the device. Fixed values are given explicitly. Varied parameters
were randomly sampled from a Gaussian distribution with the given mean value µ and standard deviation set to 0.05µ (unless
stated otherwise).

Key Description Value

attempt rate coef controls the strength of the attempt rate factor 1

barrier current a scale for the current set to the device when in barrier mode 1 arb. unit

barrier tunnel rate a tunnel rate set when the device is in barrier mode while calculating
the tunnel probability

10.0

beta effective temperature used for self-consistent calculation of the electron
density n(x)

1000 (eV)−1

bias difference in the chemical potential between source and drain 100 eV

c k kinetic term for the 2DEG 〈1 meV nm〉
D dimension of the problem to be used in the electron density integral,

(only when polylogarithm function is used to calculate the electron
density, for a 2DEG a direct analytic integral of the Fermi function is
used)

2

g 0 coefficient of the density of states 〈1.0 (eV nm)−1〉
gates the dictionary of parameters defining each of the five gates:

alpha: lever arm (same for all gates) 〈1.0〉
h: distance of the gate from the electron density (same for all gates) 〈50.0 nm〉
mean: position of the gate along linear array

- for gate 1 〈−40 nm〉
- for gate 2 〈−20 nm〉
- for gate 3 〈0 nm〉
- for gate 4 〈20 nm〉
- for gate 5 〈40 nm〉

peak: potential at the location of the electrons

- for gates 1, 3 and 5 〈0.2 mV〉
- for gates 2 and 4 〈−0.4 mV〉

rho: radius of the cylindrical gate (same for all gates) 〈5.0 nm〉
screen: the screening length (same for all gates) 〈20.0 nm〉

K 0 the strength of the Coulomb interaction 〈10 meV〉
K mat the Coulomb interaction matrix K mat(x,K 0,sigma)

kT temperature of the system used in the transport calculations 50 µK

mu Fermi level (assumed to be equal for both leads) 0.1eV

sensor gate coeff weight applied while including the potential of the gate in calculating
the sensor output

0.1

sensors the position of the two charge sensors in the 2DEG plane, stored as
(horizontal position with respect to the center of the device, vertical
position with respect to the dots which are assumed to be located on
the x-axis)

[(−20, 50), (20, 50)] nm

short circuit current an arbitrary high current value given to the device when in short circuit
mode

100 arb. unit

sigma softening parameter 3.0 nm

V potential profile V(x)

V L voltage applied to left lead 50 µV

V R voltage applied to right lead −50 µV

WKB coeff the strength of WKB tunneling 0.5

x linear array spanning the size of the device (−60, 60) nm
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